(1) \(\displaystyle\int\sin{x}dx\)
(2) \(\displaystyle\int\sin^2{x}dx\)
(3) \(\displaystyle\int\sin^3{x}dx\)
(4) \(\displaystyle\int\sin^4{x}dx\)
2乗,3乗,4乗で計算の仕方が異なるよ.確認しておこう
【解答】\(C\) は積分定数
(1) \(\displaystyle\int\sin{x}dx=-\cos{x}+C\)
(2) \(\displaystyle\int\sin^2{x}dx\)
\(\displaystyle=\int\frac{1}{2}(1-\cos{2x})dx\)
\(\displaystyle=\frac{1}{2}(x-\frac{1}{2}\sin{2x})+C\)
\(\displaystyle=\frac{1}{2}x-\frac{1}{4}\sin{2x}+C\)
(3) \(\displaystyle\int\sin^3{x}dx\)
\(\displaystyle=\int\sin^2{x}・\sin{x}dx\)
\(\displaystyle=\int(1-\cos^2{x})・(-\cos{x})’dx\)
\(\displaystyle=\int\lbrace(-\cos{x})’+\cos^2{x}(\cos{x})’\rbrace dx\)
\(\displaystyle=-\cos{x}+\frac{1}{3}\cos^3{x}+C\)
(4) \(\displaystyle\int\sin^4{x}dx\)
\(\displaystyle=\int(\sin^2{x})^2dx\)
\(\displaystyle=\int\lbrace\frac{1}{2}(1-\cos{2x})\rbrace ^2dx\)
ここで括弧の中を展開します
\(\displaystyle=\int\frac{1}{4}(1-2\cos{2x}+\cos^2{2x})dx\)
\(\displaystyle=\int\frac{1}{4}(1-2\cos{2x}+\frac{1+\cos{4x}}{2})dx\)
\(\displaystyle=\frac{1}{4}\lbrace x-\sin{2x}+\frac{1}{2}(x+\frac{1}{4}\sin{4x})+C\rbrace\)
積分定数に数をかけても積分定数は\(C\) のままです
\(\displaystyle=\frac{3}{8}x-\frac{1}{4}\sin{2x}+\frac{1}{32}\sin{4x}+C\)
⇒ 公式利用
(2) \(\displaystyle\int\sin^2{x}dx\)
⇒\(\displaystyle\sin^2{x}=\frac{1}{2}(1-\cos{2x})\)の利用
(3) \(\displaystyle\int\sin^3{x}dx\)
⇒\(\displaystyle\sin^2{x}・\sin{x}=(1-\cos^2{x})・(-\cos{x})’\)の式変形
(4) \(\displaystyle\int\sin^4{x}dx\)
⇒\(\displaystyle(\sin^2{x})^2=\lbrace\frac{1}{2}(1-\cos{2x})\rbrace ^2\)の利用
すなわち, (3) の3 乗だけ他と解き方が異なります。