[数Ⅲ]基本の不定積分 その1

問題 [目標15分]

次の不定積分を求めよ.

(1) \(\displaystyle\int x^{-4}dx\)

(2) \(\displaystyle\int\frac{1}{x^{3}}dx\)

(3) \(\displaystyle\int\sqrt{x^{3}}dx\)

(4) \(\displaystyle\int\frac{1}{3\sqrt{x}}dx\)

(5) \(\displaystyle\int 3x^{-3}dx\)

(6) \(\displaystyle\int \sqrt[4]{x^{3}}dx\)

(7) \(\displaystyle\int x^{2}\sqrt{x}dx\)

(8) \(\displaystyle\int \sqrt{x}(x-1)dx\)

(9) \(\displaystyle\int(4x^{\frac{1}{3}}+3x^{\frac{1}{2}}-1)dx\)

(10) \(\displaystyle\int \frac{2x^{3}+x^{2}}{x}dx\)

(11) \(\displaystyle\int \frac{x+1}{x}dx\)

(12) \(\displaystyle\int\frac{3x^{2}+5x}{x^{2}}dx\)

(13) \(\displaystyle\int \frac{2x}{\sqrt{x}}dx\)

(14) \(\displaystyle\int\frac{dx}{\sqrt[3]{x}}\)

(15) \(\displaystyle\int \frac{2x-1}{\sqrt{x}}dx\)

POINT

① \(\displaystyle\int x^{n}dx=\frac{1}{n+1}x^{n+1}+C (n\ne-1)\)

② \(\displaystyle\int \frac{1}{x}dx=\log|x|+C\)

まずは\(\displaystyle\int x^{n}dx\)の形に直してから計算すること

【解答】\(C\) は積分定数

(1) \(\displaystyle\int x^{-4}dx=-\frac{1}{3}x^{-3}+C\)

(2) \(\displaystyle\int\frac{1}{x^{3}}dx\)

\(\displaystyle=\int{x^{-3}}dx\)

\(\displaystyle=-\frac{1}{2}x^{-2}+C\)

(3) \(\displaystyle\int\sqrt{x^{3}}dx\)

\(\displaystyle=\int x^{\frac{3}{2}}dx\)

\(\displaystyle=\frac{2}{5}x^{\frac{5}{2}}+C\)

(4) \(\displaystyle\int\frac{1}{3\sqrt{x}}dx\)

\(\displaystyle=\int\frac{1}{3}x^{-\frac{1}{2}}dx\)

\(\displaystyle=\frac{2}{3}x^{\frac{1}{2}}+C\)

(5) \(\displaystyle\int 3x^{-3}dx=-\frac{3}{2}x^{-2}+C\)

(6) \(\displaystyle\int \sqrt[4]{x^{3}}dx\)

\(\displaystyle=\int x^{\frac{3}{4}}dx\)

\(\displaystyle=\frac{4}{7}x^{\frac{7}{4}}+C\)

(7) \(\displaystyle\int x^{2}\sqrt{x}dx\)

\(\displaystyle=\int x^{\frac{5}{2}}dx\)

\(\displaystyle=\frac{2}{7}x^{\frac{7}{2}}+C\)

(8) \(\displaystyle\int \sqrt{x}(x-1)dx\)

\(\displaystyle=\int (x^{\frac{3}{2}}-x^{\frac{1}{2}})dx\)

\(\displaystyle=\frac{2}{5}x^{\frac{5}{2}}-\frac{2}{3}x^{\frac{3}{2}}+C\)

(9) \(\displaystyle\int(4x^{\frac{1}{3}}+3x^{\frac{1}{2}}-1)dx=3x^{\frac{4}{3}}+2x^{\frac{3}{2}}-x+C\)

(10)から分数関数になります.
分数関数であっても割り算をして\(\displaystyle\int x^{n}dx\)の形に直してから計算しよう

(10) \(\displaystyle\int \frac{2x^{3}+x^{2}}{x}dx\)

\(\displaystyle=\int (2x^{2}+x)\)

\(\displaystyle=\frac{2}{3}x^{3}+\frac{1}{2}x^{2}+C\)

(11) \(\displaystyle\int \frac{x+1}{x}dx\)

\(\displaystyle=\int (1+x^{-1})dx\)

\(\displaystyle=x+\log|x|+C\)

(12) \(\displaystyle\int\frac{3x^{2}+5x}{x^{2}}dx\)

\(\displaystyle=\int (3+5x^{-1})dx\)

\(\displaystyle=3x+5\log|x|+C\)

(13) \(\displaystyle\int \frac{2x}{\sqrt{x}}dx\)

\(\displaystyle=\int 2x^{\frac{1}{2}}dx\)

\(\displaystyle=\frac{4}{3}x^{\frac{3}{2}}+C\)

(14) \(\displaystyle\int\frac{dx}{\sqrt[3]{x}}\)

\(\displaystyle=\int x^{-\frac{1}{3}}dx\)

\(\displaystyle=\frac{3}{2}x^{\frac{2}{3}}+C\)

(15) \(\displaystyle\int \frac{2x-1}{\sqrt{x}}dx\)

\(\displaystyle =2・\frac{2}{3}x^{\frac{3}{2}}-2x^{\frac{1}{2}}+C\)

\(\displaystyle =\frac{4}{3}x^{\frac{3}{2}}-2x^{\frac{1}{2}}+C\)

よかったらシェアしてね!
  • URLをコピーしました!
  • URLをコピーしました!

この記事を書いた人

数学講師10年以上。大学入試、高校数学問題の「練習」によければつかってください!記事中の間違え、計算ミスやわかりにくい所はお問い合わせからご指摘いただければ幸いです。お気軽にご連絡ください。

目次